

VERTICAL IN-LINE PUMPS

Crompton Greaves Vertical In-Line Pumps are designed and developed for hot and cold water handling and occupy minimum floor space. These are power driven centrifugal monoset pumps.

Features

- Vertical In-line design means minimum space requirement, easy installation with smooth and quite operation.
- These are single stage, single suction monoset pumps and are mounted by their suction and delivery flanges, with additional support, if required.

- Back pull-out design.
- Flange mounted motor ensures easy maintenance.
- TEFC motor with class 'F' insulation and temperature rise restricted to class 'B' for long life.
- Volute and adaptor are fitted with bronze wearing ring for least internal leakage.
 - High quality and long life mechanical seal.
- Suitable for 65°C water with standard mechanical seal and 110°C water with special mechanical seal.
- Rust-free bronze impeller.

Applications

- Water circulation for Cooling Towers in Air Conditioning Plants and Cold Storage Plants.
- Hot water handling systems.
- Water supply and circulation for Industrial and Commercial Establishments.
- Water pressure boosting for Industrial and Sprinkler Systems.
- Auxiliary equipment for water circulation
- Irrigation and dewatering Systems.

Standard Specifications

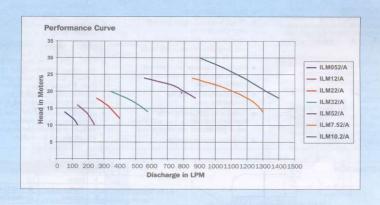
- Range: 0.37kW to 7.5 kW (0.5 HP to 10.0 HP).
- Supply: 415V, 3 Phase, 50Hz, AC.
- Pipe Size: 32 x 32 mm to 100 x 100 mm.
- Total head: Upto 30 metres.
- · Capacity: Upto 1400 LPM.
- Liquid : Clear water.
- Rotation : Anti-clockwise as viewed from motor end.
- Operating temperature : Suitable for 65°C water.

Electric Motor

- TEFC, SCR, 2 Pole (3000 RPM syn. speed), Electric Motor 415 V, 3 phase, 50Hz, AC supply with class 'F' insulation and temperature rise restricted to class 'B', for ambient temperature upto 40°C.
- Special Motors with different enclosures, supply voltage, frequency and ambient temperature can be offered on request.

G
3 4
5 6
The second secon

No.	PART	MATERIAL					
1	Motor	-					
2	Shaft	Graded Cast Iro					
3	Adaptor	Graded Cast Iro					
4	Aircock	Brass					
5	Volute Casing	Graded Cast Iro					
6	Delivery Flange	Graded Cast Iro					
7	Base Plate	Graded Cast Iro					
8	Mechanical Seal	-					
9	Wearing Ring (Adaptor)	Brass					
10	Impeller	Graded Cast Iro					
11	Wearing Ring (Volute)	Brass					
12	Delivery Flange	Graded Cast Iro					



PERFORMANCE CHART

Rating	Pipe size Suc. x Del.	x Del. kW (HP)	Total Head in Metres										
			10	12	14	16	18	20	22	24	26	28	30
	(mm)			Discharge in LPM									
ILM052/A	32 x 32	0.37 (0.5)	135	105	50			1					
ILM12/A	40 x 40	0.75 (1.0)	240	215	185	130	Ser.		16 3	100			
ILM22/A	50 x 50	1.5 (2.0)		400	360	315	250		13				
ILM32/A	65 x 65	2.2 (3.0)			575	515	440	340					
ILM52/A	80 x 80	3.7 (5.0)					875	800	720	550			
ILM7.52/A	100 x 100	5.5 (7.5)		-	1300	1260	1200	1110	1000	850	A		
ILM10.2/A	100 x 100	7.5 (10.0)					1400	1320	1250	1180	1090	1000	900

Notes :-

- 1. The above performance is based on rated voltage (415+6%-15% for 1 Phase) and rated frequency (50Hz \pm 3%).
- 2. The above performance is subjected to tolerances as per applicable standards.
- 3 Pipe sizes mentioned in mm are nearest conversion of inches, but actual pipe threadings are provided as per 'BSP' standard
- 4 Total Head = Static Suction + Static Delivery + Losses in pipes, bends etc.

